15 research outputs found

    Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation

    Get PDF
    Nowadays, there is a remarkable world trend in employing UAVs and drones for diverse applications. The main reasons are that they may cost fractions of manned aircraft and avoid the exposure of human lives to risks. Nevertheless, they depend on positioning systems that may be vulnerable. Therefore, it is necessary to ensure that these systems are as accurate as possible, aiming to improve the navigation. In pursuit of this end, conventional Data Fusion techniques can be employed. However, its computational cost may be prohibitive due to the low payload of some UAVs. This paper proposes a Multisensor Data Fusion application based on Hybrid Adaptive Computational Intelligence - the cascaded use of Fuzzy C-Means Clustering (FCM) and Adaptive-Network-Based Fuzzy Inference System (ANFIS) algorithms - that have been shown able to improve the accuracy of current positioning estimation systems for real-time UAV autonomous navigation. In addition, the proposed methodology outperformed two other Computational Intelligence techniques

    Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-12-01, pub-electronic 2021-12-05Publication status: PublishedIt is estimated that, in the Brazilian Amazon, forest degradation contributes three times more than deforestation for the loss of gross above-ground biomass. Degradation, in particular those caused by selective logging, result in features whose detection is a challenge to remote sensing, due to its size, space configuration, and geographical distribution. From the available remote sensing technologies, SAR data allow monitoring even during adverse atmospheric conditions. The aim of this study was to test different pre-trained models of Convolutional Neural Networks (CNNs) for change detection associated with forest degradation in bitemporal products obtained from a pair of SAR COSMO-SkyMed images acquired before and after logging in the Jamari National Forest. This area contains areas of legal and illegal logging, and to test the influence of the speckle effect on the result of this classification by applying the classification methodology on previously filtered and unfiltered images, comparing the results. A method of cluster detections was also presented, based on density-based spatial clustering of applications with noise (DBSCAN), which would make it possible, for example, to guide inspection actions and allow the calculation of the intensity of exploitation (IEX). Although the differences between the tested models were in the order of less than 5%, the tests on the RGB composition (where R = coefficient of variation; G = minimum values; and B = gradient) presented a slightly better performance compared to the others in terms of the number of correct classifications for selective logging, in particular using the model Painters (accuracy = 92%) even in the generalization tests, which presented an overall accuracy of 87%, and in the test on RGB from the unfiltered image pair (accuracy of 90%). These results indicate that multitemporal X-band SAR data have the potential for monitoring selective logging in tropical forests, especially in combination with CNN techniques

    A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-19, pub-electronic 2021-08-24Publication status: PublishedThe near-real-time detection of selective logging in tropical forests is essential to support actions for reducing CO2 emissions and for monitoring timber extraction from forest concessions in tropical regions. Current operating systems rely on optical data that are constrained by persistent cloud-cover conditions in tropical regions. Synthetic aperture radar data represent an alternative to this technical constraint. This study aimed to evaluate the performance of three machine learning algorithms applied to multitemporal pairs of COSMO-SkyMed images to detect timber exploitation in a forest concession located in the Jamari National Forest, Rondônia State, Brazilian Amazon. The studied algorithms included random forest (RF), AdaBoost (AB), and multilayer perceptron artificial neural network (MLP-ANN). The geographical coordinates (latitude and longitude) of logged trees and the LiDAR point clouds before and after selective logging were used as ground truths. The best results were obtained when the MLP-ANN was applied with 50 neurons in the hidden layer, using the ReLu activation function and SGD weight optimizer, presenting 88% accuracy both for the pair of images used for training (images acquired in June and October) of the network and in the generalization test, applied on a second dataset (images acquired in January and June). This study showed that X-band SAR images processed by applying machine learning techniques can be accurately used for detecting selective logging activities in the Brazilian Amazon

    Supervised Band Selection in Hyperspectral Images using Single-Layer Neural Networks

    Get PDF
    International audienceHyperspectral images provide fine details of the scene under analysis in terms of spectral information. This is due to the presence of contiguous bands that make possible to distinguish different objects even when they have similar colour and shape. However, neighbouring bands are highly correlated, and, besides, the high dimensionality of hyperspectral images brings a heavy burden on processing and also may cause the Hughes phenomenon. It is therefore advisable to make a band selection pre-processing prior to the classification task. Thus, this paper proposes a new supervised filter-based approach for band selection based on neural networks. For each class of the data set, a binary single-layer neural network classifier performs a classification between that class and the remainder of the data. After that, the bands related to the biggest and smallest weights are selected, so, the band selection process is class-oriented. This process iterates until the previously defined number of bands is achieved. A comparison with three state-of-the-art band selection approaches shows that the proposed method yields the best results in 43.33% of the cases even with greatly reduced training data size, whereas the competitors have achieved between 13.33% and 23.33% on the Botswana, KSC and Indian Pines datasets

    Unsupervised Cluster-Wise Hyperspectral Band Selection for Classification

    No full text
    International audienceA hyperspectral image provides fine details about the scene under analysis, due to its multiple bands. However, the resulting high dimensionality in the feature space may render a classification task unreliable, mainly due to overfitting and the Hughes phenomenon. In order to attenuate such problems, one can resort to dimensionality reduction (DR). Thus, this paper proposes a new DR algorithm, which performs an unsupervised band selection technique following a clustering approach. More specifically, the data set was split into a predefined number of clusters, after which the bands were iteratively selected based on the parameters of a separating hyperplane, which provided the best separation in the feature space, in a one-versus-all scenario. Then, a fine-tuning of the initially selected bands took place based on the separability of clusters. A comparison with five other state-of-the-art frameworks shows that the proposed method achieved the best classification results in 60% of the experiments

    Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT

    No full text
    In this paper, the problem of identifying moving objects using aerial images obtained by UAV is discussed. The main interest is to automatic information extraction for monitoring large areas. The SURF descriptor has been employed for the detection of interest points, while the binary descriptor FREAK has been used to construct feature vectors. The RANSAC method is employed to estimate the parameters from the matrix of points, and then, the displacement of the camera is estimated. Finally, morphological operations have been employed to identify moving objects. The results show that the methodology can be used to identify moving objects from UAV images.Pages: 8293-830

    Comparação entre HOG+SVM e Haar-like em cascata para a detecção de campos de futebol em imagens aéreas e orbitais

    No full text
    Automatic object recognition in digital images is not an simple task due to diverse variations present within this process, consequently, different general purpose techniques have been proposed. In this paper, an approach combining HOG and SVM and other utilizing Haar-like cascade for automatic soccer field detection in airborne and satellite imagery is analyzed.Pages: 8154-816

    Automatic Position Estimation Based on Lidar × Lidar Data for Autonomous Aerial Navigation in the Amazon Forest Region

    No full text
    In this paper we post-process and evaluate the position estimation of pairs of template windows and geo-referenced images generated from LiDAR cloud point data using the Normalized Cross-Correlation (NCC) method. We created intensity, surface and terrain pairs of images for use with template matching, with 5 m pixel spacing, through binning. We evaluated square and circular binning approaches, without filtering the original data. Template matching achieved approximately 7 m root mean square error (RMSE) on intensity and surface templates on the respective geo-referenced images, while on terrain templates it had many mismatches due to insufficient terrain features over the assumed flight transect. Analysis of NCC showed the possibility of rejecting bad matches of intensity and surface templates, but terrain templates required an additional criteria of flatness for rejection. The combined NCC of intensity, surface and terrain proved stable for rejection of bad matches and had the lowest RMSE. Filtering outliers from surface images changed very little the accuracy of the matches, but greatly improved correlation values, indicating that the forest canopy might have the best features for geo-localization with template matching. Position estimation is essential for autonomous navigation of aerial vehicles and the these experiments with LiDAR data show potential for localization over densely forested regions where methods using optical camera data may fail to acquire distinguishable features
    corecore